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ABSTRACT

In the following work, we demonstrate the efficacy of a Riccati dW ideal MHD stability analysis that bypasses the numerically intractable
integration of the Newcomb equation. By transforming the linear Newcomb equation into a quadratic Riccati equation, an accurate and
equivalent dW analysis is performed that is shown to enjoy some numerical advantages. We demonstrate that the Riccati approach is better
conditioned than its Newcomb counterpart at the magnetic axis, and we apply dynamical systems insights to examine its behavior at singular
points. We further discuss the constraints involved in solving for the extremal admissible perturbations of a dW analysis.
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I. INTRODUCTION

The ideal MHD energy principle,1 as formulated in 1958 by
Bernstein et al.,2 states that a plasma equilibrium is stable if and only if
dWðn�; nÞ � 0 for all admissible perturbations n. Here, dWðn�; nÞ
represents the change in potential energy away from equilibrium due
to n, a plasma displacement. The set of admissible perturbations is
generally defined to include any displacement n that everywhere satis-
fies dWðn�; nÞ <1.

In 1960, this energy principle was applied to the cylindrical screw
pinch by Newcomb,3 who analyzed fixed-boundary perturbations (a
fixed-boundary, or internal, perturbation n satisfies njr¼1 ¼ 0 at the
plasma edge). Newcomb derived an ordinary differential equation
(ODE) satisfied by such perturbations and showed that its integration
determined a stability criterion for the screw pinch. Newcomb’s proce-
dure was generalized in A. H. Glasser’s DCON code,4 which defined
the stability criteria for fixed- and free-boundary perturbations in axi-
symmetric toroidal plasmas [a free-boundary (or external) perturba-
tion occurs in a plasma surrounded by a vacuum region rather than a
conducting wall and therefore allows njr¼1 6¼ 0]. It was more recently
pointed out in Ref. 5 that the dW analysis of DCON was equivalent to
a Riccati problem, for which there exist well-established numerical
methods in the control theory literature.

Riccati problems often arise in optimal control applications when
a cost functional being optimized over time is quadratic in the system’s

state variables and control inputs.6–8 Treating its radial coordinate as
an effective time parameter, the perturbed energy functional
dWðn�; nÞ has an analogous quadratic form, and its minimization can
therefore be solved by a radial—rather than temporal—Riccati ODE.

Although Riccati ODEs are nonlinear, they can generally be reex-
pressed as linear ODEs by a coordinate transformation. This transfor-
mation is a common strategy8–10 for solving Riccati problems and can
be advantageous for applications that prioritize solution speed,
as demonstrated in the parallelized MHD stability code STRIDE, of
Refs. 5 and 11.

In especially large or stiff problems (a characterization often
appropriate to a dW analysis), however, this linear approach can be
impractical.12 Perturbations of toroidal plasma equilibria are often
challenging in just this way: They may require many Fourier modes to
be accurately resolved, and the linear Newcomb equation exhibits stiff
behavior at scales spanning many orders of magnitude. Such numeri-
cal problems can be exacerbated in the analysis of perturbations with
high mode numbers or in equilibria whose perturbations couple across
toroidal modes (as in stellarators).

In the present work, we therefore take the opposite approach: We
sidestep the linear toroidal Newcomb equation by reexpressing it as a
quadratic Riccati ODE; in short, we solve Eq. (29) of the present paper
rather than Eq. (27). We numerically implement a Riccati dW analysis
for toroidal plasmas and demonstrate its accuracy. In so doing, we
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address questions that arise in the solution of the dW Riccati ODE,
especially with respect to its singularities.

The remainder of this paper is organized as follows: In Sec. II, we
summarize the Riccati formulation of the dW problem for the cylin-
drical screw pinch and emphasize its equivalence to Newcomb’s proce-
dure. In Sec. III, we analyze the asymptotic behavior of the cylindrical
Riccati ODE at its singular points. In Sec. IV, we discuss the Riccati
dW problem for an axisymmetric toroidal equilibrium, and we
describe our solution methods for it.

In Sec. V, we benchmark the numerical results of our toroidal
Riccati formulation against DCON’s dW analysis, and we describe the
numerical advantages of the Riccati approach. In particular, we show
that the Riccati equation—while sacrificing the linearity and solution
speed of the Newcomb equation—significantly moderates the stiff
mode growth of the Newcomb system at the magnetic axis.
Furthermore, unlike solutions to the Newcomb equation, Riccati solu-
tions are found to be finite at rational surfaces. In Sec. VI, we discuss
the constraints imposed by the admissibility criterion dWðn�; nÞ <1
on the behavior of extremal perturbations. In Sec. VII, we summarize
our results and conclude.

II. NEWCOMB’S SCREW PINCH STABILITY CRITERION
IN THE RICCATI FORMULATION

To introduce the Riccati formulation of the dW problem, we first
describe the cylindrical case in some detail. We begin with the
Lagrangian for dW, the change in plasma potential energy in a cylindri-
cal screw pinch3 due to a perturbed mode nðrÞ exp ½iðmhþ kzÞ�

dW ¼
ð1
0

Lðr; n; n0Þdr ¼ 1
2

ð1
0

f ðn0Þ2 þ gn2
� �

dr; (1)

where 0 � d=dr. [following Newcomb’s familiar expression for dW,
Eq. (1) omits a surface contribution to the perturbed plasma potential
energy (see Ref. 1, Eq. 11.89). We note that referring to a cost func-
tional as a “Lagrangian” is standard nomenclature in control theory,
although we emphasize that our cost function is integrated radially,
rather than over time.] Letting lðrÞ2 � m2 þ k2r2, the functions f(r)
and g(r) are defined as follows:

f ðrÞ ¼ k2r3BzðrÞ2

lðrÞ2
1� m

qðrÞ

� �2

;

gðrÞ ¼ f ðrÞ 2k2

lðrÞ2
1þ m

qðrÞ
1� m

qðrÞ
þ lðrÞ2 � 1

r2

2
664

3
775þ 2k2

lðrÞ2
r2p0ðrÞ:

(2)

Here, qðrÞ � �krBzðrÞ=BhðrÞ denotes the safety factor (with effective
toroidal mode number n¼ 1 and k � n=R0), BðrÞ the magnetic field,
and p(r) the pressure profile. We observe that f ðrÞ � 0 8 r.

In accordance with the energy principle, we seek to characterize
plasma stability by searching for perturbations that minimize dW.
However, the minimization of dW is in general complicated by the
fact that variations of Eq. (1) may not be positive-definite. We recall
the following results from the calculus of variations, regarding criteria
for the optimality of any nðrÞ.13–15

1. (Necessary criterion) Any perturbation nðrÞ that minimizes
dW satisfies the Euler-Lagrange equation of dW (i.e.,
Newcomb’s equation)

�ðf n0Þ0 þ gn ¼ 0: (3)

We observe that this cylindrical Newcomb equation has singular-
ities where f ðrÞ ¼ 0—namely, at the magnetic axis ðr ¼ 0Þ and at
rational surfaces rs where the safety factor satisfies qðrsÞ ¼ m.

To state the second optimality criterion, we first define a conju-
gate point. Given a solution n0ðrÞ of Eq. (3) on an interval ½a; b�, which
satisfies n0ðaÞ ¼ 0 and is not identically zero, a point r0 2 ða; b� is
conjugate to a if n0ðr0Þ ¼ 0. With this definition, we note:

2. (Sufficient criterion) An extremal nðrÞ is a strict minimum
of dW on the interval ½a; b� if @2L=@n0@n0 > 0 8 r 2 ½a; b�
and ða; b� contains no points conjugate to a.

Newcomb’s dW analysis generalizes these criteria to test for
fixed-boundary mode stability in a screw pinch. In particular, although
above the sufficient condition is restricted to intervals on which
@2L=@n0@n0 ¼ f > 0, Newcomb demonstrates that his procedure suf-
fices as a test of stability for all admissible perturbations of a general
equilibrium, including those with rational surfaces rs, where f ðrsÞ ¼ 0.

We summarize the Newcomb procedure as follows: (i) Suydam’s
criterion16 (to be defined) is checked for interchange stability; (ii)
assuming that Suydam’s criterion is satisfied, Eq. (3) is integrated from
the magnetic axis (r¼ 0) to the plasma edge (r¼ 1), with initial condi-
tion njr¼0 ¼ 0; (iii) after each rational surface 0 < rs < 1—where the
ODE is singular—n is re-initialized again with a “small” solution (to be
defined) and integrated forward; (iv) if the resulting integrated solution
has any conjugate points r0 62 f0; rsg—that is, if n has a zero-crossing
for any r0 2 ½0; 1� such that f ðr0Þ 6¼ 0—then, the plasma is unstable to
fixed-boundary modes; otherwise, it is stable to such modes.

The conjugate points of Newcomb’s analysis arise when dW fails
to be positive-definite. Roughly speaking, therefore, Newcomb demon-
strates that whenever dW is not positive-definite, an admissible pertur-
bation can be constructed satisfying dW < 0.

We now reexpress this Newcomb procedure in its equivalent
Riccati formulation. The Riccati ODE commonly arises in control the-
ory as the solution of a linear quadratic regulator (LQR) problem for a
quadratic cost function integrated over time (see, e.g., Ref. 7):Ð
½Qx2 þ Ru2�dt, where _x ¼ Ax þ Bu. In the present problem, the

same structure is found in the quadratic Lagrangian of Eq. (1), where
ðx; uÞ � ðn; n0Þ; _x ¼ u, and r is an effective time parameter.

Following the LQR prescription, we define the Riccati variable P
as a linear map k ¼ Px from a perturbation (x � n) to its conjugate
momentum, k � @L=@n0 ¼ f n0, namely,

P � k
x
¼ f n0

n
: (4)

Using P to eliminate n0 from Eq. (3), we find

P0 ¼ g � P2

f
: (5)
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Equation (5) is the cylindrical Riccati ODE, which provides an alterna-
tive to solving Newcomb’s equation in a dW analysis.

We perform steps (ii)–(iv) of Newcomb’s dW procedure in the
Riccati formulation as follows: Pð0Þ is initialized according to Eq. (4)
to reflect Newcomb’s initial conditions ½n; n0�ð0Þ. We note that the
Riccati ODE shares the same singular points—r such that f ðrÞ ¼ 0—
as its Newcomb counterpart, and we similarly reinitialize PðrsÞ to the
small solution (to be defined in Sec. III) at each rational surface. We
further note that the conjugate points of Newcomb’s procedure—r0
such that nðr0Þ ¼ 0 and f ðr0Þ 6¼ 0—correspond to infinites of P,
namely, points where lim�!0 Pðr06�Þ ¼ 61. Therefore, in the
Riccati approach, instead of integrating Eq. (3) and monitoring for
conjugate points where nðr0Þ ¼ 0 we equivalently integrate Eq. (5)
and monitor for points r0, where

DCðr0Þ �
1

Pðr0Þ
¼ 0: (6)

As in Newcomb’s analysis, this condition indicates a plasma instability
to fixed-boundary perturbations. (A toroidal analog of this critical
determinant DC—which we shall revisit in Sec. IV—was already
derived in Ref. 4.) We have thus reconstructed the cylindrical
Newcomb procedure in the Riccati formalism.

Although it is a mathematically equivalent formulation, the
Riccati equation characterizes the equilibrium stability more directly
than its Newcomb counterpart. This can be seen by defining
SðrÞ � 1

2 nPn. Conditional on P satisfying Eq. (5), we note

dS
dr
¼ nn0P þ 1

2
n2P0 ¼ 1

2
f ðn0Þ2 þ gn2
� �

: (7)

Comparing this expression to Eq. (1) and integrating, we get

SðrÞ � 1
2
nðrÞPðrÞnðrÞ ¼

ðr
0

Lð~r ; n; n0Þd~r ; (8)

where we have set Sð0Þ ¼ 0. The Riccati variable P(r) is therefore a
bilinear form that maps a localized perturbation nðrÞ to its associated
cumulative extremal energetic cost S(r) over the plasma subinterval
½0; r�. It effectively calculates the energetic cost of an extremal perturba-
tion n that takes the value nðrÞ at r and satisfies 0 ¼ Sð0Þ ¼ 1

2 f nn0jr¼0.
For this reason, P is referred to as the plasma response. [We note that,
whereas the function S(r) appears serendipitously chosen above, it may
also be systematically derived as Hamilton’s principal function in a
Hamilton–Jacobi analysis, as shown in Ref. 5.]

It is therefore intuitive that a negative infinity in the plasma
response Pðr0Þ—at a surface r0 where Eq. (6) is satisfied—indicates a
plasma unstable to internal modes. After all, Pðr��Þ grows unbound-
edly negative as r�� � r0 � � approaches r0, such that for � > 0 small
enough, no internal mode with a finite plasma response can be con-
structed on ½r�� ; 1� to sufficiently offset the associated negative energy,
Sðr��Þ � 1

2 n2Pðr��Þ.
We note that a free-boundary stability analysis follows from Eq.

(8) as well. In particular, assuming that an equilibrium satisfies
Suydam’s criterion and is stable to fixed-boundary modes—i.e., no
conjugate points DCðrÞ ¼ 0 are found when integrating the Riccati
ODE over r 2 ½0; 1�—then any solution n of Eq. (3) is not only
extremal but minimizes dW. Accordingly, the Riccati solution P(1)
maps an edge perturbation to its minimal energy

Sð1Þ ¼ 1
2
nð1ÞPð1Þnð1Þ: (9)

In particular, when Eq. (5) for P(r) is integrated to the edge of an inter-
change- and fixed-boundary-stable equilibrium, then the Sð1Þ of Eq.
(9) reflects the minimum cumulative energy consistent with an edge
perturbation nð1Þ. P(1) correspondingly determines the bulk plasma’s
energetic response to free-boundary modes. We denote this response
asWP � Pð1Þ.

To define a stability criterion for a free-boundary perturbation, we
make a complete accounting of its associated energy. In particular, we
must include a surface plasma energy that was omitted from Eq. (1), as
well as the (always-stabilizing) energetic response of the surrounding
magnetized vacuum. We denote these additional contributions to the
perturbed energy by 1

2Wedgenð1Þ2, where Wedge �WS þWV . The
straightforward calculation of these surface and vacuum responses
can be found in Eq. 11.98 of Ref. 1 and is performed independently
ofWP.

Therefore, a plasma equilibrium is unstable to free-boundary
modes if

WP þWedge < 0: (10)

We have thus found an alternative ODE—Eq. (5)—that can be
integrated in lieu of the Newcomb equation for the dW analysis of the
screw pinch. Newcomb’s zero-crossing criterion for fixed-boundary
modes has been replaced with a criterion on the zero-crossings of DC,
as defined in Eq. (6). Finally, we have specified an instability criterion
for free-boundary modes in Eq. (10), whose value WP � Pð1Þ is
directly computed by the Riccati ODE.

III. SINGULARITIES OF THE SCREW PINCH dW RICCATI
ODE

Having presented the equivalent Riccati formulation of
Newcomb’s screw pinch dW analysis, we now look more closely at
some of its details. In particular, we examine the singularities of the
cylindrical Riccati ODE defined in Eq. (5). We will see that the singular
points of this ODE anticipate salient features of the toroidal Riccati
problem to be discussed in Sec. IV.

As before, we note that Eq. (5) shares the same fixed singulari-
ties—where f ðrÞ ¼ 0—as the Newcomb equation (3). We examine
each of these points in turn.

We first consider the behavior of Riccati equation at rational sur-
faces rs, where qðrsÞ ¼ m and where f ðrsÞ has a second-order zero.
Defining z � r � rs, we expand Eq. (2) near z¼ 0 and find that
f � f2z2 þ f3z3 and g � g0 þ g1z in a generic cylindrical ideal MHD
equilibrium with nonzero pressure.1,3 We substitute a power law
ansatz P � Azj into Eq. (5) and find two asymptotic solutions for P at
the rational surface, both having j ¼ 1

Prs
6 � a6f2z: (11)

Here, we have defined

a6 ¼
�1
2

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4DS
p� �

; DS � �
g0
f2
: (12)

As previously referenced, Suydam’s criterion16

DS <
1
4

(13)

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 022114 (2020); doi: 10.1063/1.5109160 27, 022114-3

Published under license by AIP Publishing

 07 June 2024 16:48:21

https://scitation.org/journal/php


is a necessary condition for the interchange stability of a screw pinch
plasma geometry. Although in general this criterion must be checked
for satisfaction, we shall assume it to hold and therefore continue our
analysis, with coefficients satisfying aþ < �1=2 and a� > �1=2. We
refer to Prs

þ of Eq. (11) as the “big” asymptotic solution at rs and Prs
� as

the “small” asymptotic solution.
One may assess the relative dominance of these asymptotes

Prs
6 � a6f2z by substituting a perturbed trajectory P ¼ Prs

6ðrÞ
þ dPrs

6ðrÞ into Eq. (5) and linearizing. We find

dPrs
6
0ðzÞ � � 2a6

z
dPrs

6ðzÞ: (14)

Expanding Eq. (12) for small DS—an especially appropriate ordering
for low beta plasmas—suggests ½aþ � �1þ DS� and ½a� � �DS�.
Therefore, an arbitrarily perturbed solution on approach to rs will
force the Riccati solution to its dominant Prs

þ asymptote, especially for
z sufficiently close to 0, as exhibited for z< 0 on the first plot of Fig. 1.

Solving to next order, we substitute the ansatz Prs
6 � a6f2z þ Czk

into Eq. (5) and keep terms of least order

0 � Cð2a6 þ kÞzk�1 � ðg1 þ f3a
2
6Þz þ

C2

f2
z2k�2

" #
: (15)

Due to the ODE’s nonlinearity, the dominant balance of Eq. (15)
has solutions with arbitrary coefficient C: The zk�1 term vanishes for
k ¼ �2a6. Of these, the solution ðk ¼ �2a�Þ < 1 is excluded
because it would dominate the leading order OðzÞ term of Prs

�.
However, given�1 < aþ < � 1

2 (an ordering typical of low b cylindri-
cal plasmas), the big solution’s next leading contribution would appro-
priately be of order�2aþ.

Additionally, k ¼ 2 satisfies dominant balance for the first two
terms of Eq. (15), in which case each branch uniquely determines C.
We correspondingly distinguish three possible asymptotic solutions to
next order

Prs
þ � aþf2z þ

g1 þ f3a2þ
2ð1þ aþÞ

" #
z2;

Prs
þjC 6¼0 � aþf2z þ Cjzj�2aþ ;

Prs
� � a�f2z þ

g1 þ f3a2�
2ð1þ a�Þ

" #
z2:

8>>>>>>>><
>>>>>>>>:

(16)

Equation (16) may alternatively be derived by recalling that Riccati
solutions are, up to an overall constant, in one-to-one correspondence
with solutions of Newcomb’s equation—after all, P ¼ f n0=n.
Newcomb’s Eq. (3) has big and small asymptotic solutions near rs

nrs � Anrsþ þ Bnrs�; (17)

which are readily determined by a Frobenius expansion

nrs6 ¼ jzj
a6 1þ g1 � f3a6ð2þ a6Þ

2f2ð1þ a6Þ
z þ � � �

� �
: (18)

[Here, a6 is defined as in Eq. (12).] We note that nrs6=jzj
a6 is analytic

near rs whenever f and g are.
17

When Eq. (17) is now inserted into Eq. (4), we find again the
three expressions of Eq. (16). In particular, when A¼ 0 or B¼ 0 in
Eq. (17), the resulting Riccati asymptotes Prs

þ � f nrsþ
0=nrsþ and

Prs
� � f nrs�

0=nrs� are analytic and take the form of the first and last
expressions of Eq. (16), respectively. These two solutions are
highlighted in the first plot of Fig. 1.

The nonanalytic solution Prs
þjC 6¼0 corresponds to a ‘mixed’

asymptote nrs for which A and B are nonzero, and the undetermined
coefficient C is proportional to B/A. As noted in Eq. (14), any A 6¼ 0
contribution drives P toward its big solution asymptote due to the
dominance of nrsþ. The mixed solution is C1-continuous, with a gener-
ally discontinuous and divergent second derivative. For all solutions,
we observe that P and P0 are continuous and finite at rs, with well-
defined limits PðrsÞ ¼ 0 and P0ðrsÞ ¼ a6f2.

Because of the general non-analyticity of P at rs, there is some
ambiguity about integrating past this singularity. As in treatments of
Newcomb’s equation, asymptotic solutions must be independently
determined on the left and right sides of rs. In the analysis of this
paper, we adopt Newcomb’s approach, also used in codes such as
PEST218 and DCON,4 which constrain the space of admissible pertur-
bations to those satisfying a finite energy “physicality condition,”
dW <1. This condition fully determines our treatment of the ratio-
nal surfaces, as we now describe.

Given the scaling in Eq. (8) of the perturbed potential energy, we
can approximate the energy of the big and small asymptotic solutions
at the rational surface as follows:

dWþjrs / nrsþP
rs
þnrsþ / jzj

1þ2aþ � jzj�
ffiffiffiffiffiffiffiffiffiffi
1�4DS
p

! 1

dW�jrs / nrs�P
rs
�nrs� / jzj

1þ2a� � jzjþ
ffiffiffiffiffiffiffiffiffiffi
1�4DS
p

! 0:
(19)

[Here, we have continued to assume Suydam’s criterion, Eq. (13).]
Solutions along the big asymptote are seen to have infinite energy at
the rational surface.

FIG. 1. Asymptotic solutions of the Riccati variable P are plotted near the singulari-
ties—the rational surface ðz � r � rs ¼ 0Þ and magnetic axis ðr ¼ 0Þ—of a typi-
cal cylindrical equilibrium. The Prs

� asymptote has a small negative slope, although
it may not be apparent.
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In Newcomb’s analysis, therefore, the dW <1 condition is
imposed by using the “small solution crossing” (SSC), which restricts
the Newcomb system to its small solution nrs� at a rational surface. We
equivalently restrict the Riccati system to its small asymptote Prs

�.
When a rational surface is crossed, the SSC condition requires exiting
the singularity along the small Prs

� asymptote, thereby removing the
effect of the asymptotic infinite-energy perturbation nrsþ on the value
of dW. We further discuss the constraints that the dW <1 condition
places on our Riccati solutions in Sec. VI.

Having determined the asymptotic treatment of Eq. (5) near rs,
we now examine the Riccati ODE’s singularity at the magnetic axis,
r¼ 0. For ease of presentation, we shall assume that our modes satisfy
jmj > 1. (Modes jmj ¼ 0; 1 require separate treatment.) Accordingly,
given asymptotic expansions f � f3r3 þ f4r4 and g � g1r þ g2r2 of
Eq. (2), typical of cylindrical equilibria3 for small r, we substitute a
power law ansatz P � Arj into Eq. (5) and iterate.

Solving to subleading order, we find

Paxis
6 � g6f3r

2 þ g2 þ f4g26
3þ 2g6

" #
r3; (20)

where

g6 ¼ � 16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1

f3

r" #
: (21)

Expanding Eq. (2), we note that g1=f3 ¼ m2 � 1, such that
g6 ¼ �½16jmj�. Therefore, the degree of freedom (DOF) of this first-
order nonlinear ODE generally emerges at higher order in the Paxis

þ
expansion—unlike the coefficient C that appeared already in the sec-
ond term of Eq. (16). In particular, at the axis, a term of the form
Paxis
þ �…þ ðDr�2gþÞ will eventually appear at higher order in the

expansion.
By substituting the ansatz n � rj into Eq. (3), it is readily seen

that the two asymptotic Riccati solutions Paxis
6 of Eq. (20) each corre-

spond, respectively, to two asymptotic Newcomb solutions naxis6 � rg6 .
Since gþ < 0, however, a regular, dW <1 solution for the perturba-
tion n at the magnetic axis requires that we choose n � naxis� , and
therefore P � Paxis

� , for our Riccati initial condition, as before. In keep-
ing with dW <1, therefore, we initialize the Riccati solution of Eq.
(5) by setting Pð�Þ ¼ Paxis

� ð�Þ ¼ f n0axis� =naxis� j�.
We furthermore note that only the Paxis

� asymptote of Eq. (20) is
an attractor as we integrate away from r¼ 0. In particular, perturbing
our trajectory at the axis as we did in Eq. (14), we find

dPaxis
6
0ðrÞ � � 2g6

r
dPaxis

6 ðrÞ: (22)

Since gþ < 0 < g� (8 jmj > 1), any perturbation to the Paxis
� (respec-

tively, Paxis
þ ) is infinitely suppressed (respectively, amplified) for r arbi-

trarily close to the magnetic axis—as depicted in Fig. 2. As a result, any
perturbed solution very near r¼ 0 will converge rapidly to the stable
asymptote Paxis

� upon exiting from the axis. This observation will be
especially relevant in our discussion of the toroidal Riccati system’s ini-
tial conditions in Sec. IV. We note that this rapid convergence to Paxis

�
is also visible in the second plot of Fig. 1.

As a final note, we observe that the scalings of Paxis
6 and Prs

6 in
Eqs. (16) and (20), respectively, render P finite—zero, in fact—at all of
the Riccati ODE’s fixed singularities. This quiescent behavior contrasts

with the divergence of the corresponding Newcomb solutions. We
note, however, that while the preceding analysis has established this
behavior of P at the fixed singularities of Eq. (5), we have not specified
a numerical treatment for the nonlinear ODE’s spontaneous singulari-
ties,19 where P diverges and DC ! 0. Clearly, such points cannot be
integrated over without some numerical strategy.

The spontaneous singularities of the Riccati equation are a well-
known and commonly addressed feature of Riccati systems. For now,
we simply observe that the ODE for R � 1=P—which passes through
zero at the spontaneous singularities of P—may be integrated instead

R0 ¼ � P0

P2
¼ 1

f
� gR2: (23)

[R is the very same critical determinant of Eq. (6).] We delay a detailed
discussion of the “complementary” Riccati ODE of Eq. (23) until Sec.
IV, where spontaneous singularities of the toroidal Riccati equation
are addressed in an entirely analogous manner.

IV. THE dW RICCATI APPROACH FOR AXISYMMETRIC
TOROIDAL EQUILIBRIA

We now study the dW Riccati formulation for axisymmetric
toroidal plasmas. Referring the reader to Refs. 4 and 5 for greater
detail, we begin by recalling that toroidal perturbations may be
Fourier-decomposed into sums of normal modes of the form

nm;nðxÞ ¼ nm;nðwÞeiðmh�nfÞ: (24)

Here, ðw; h; fÞ represent the flux function (radial), poloidal, and toroi-
dal coordinates and (m, n) are the poloidal and toroidal mode

FIG. 2. The above plot depicts the growth rates of perturbations to the two asymp-
totic solutions Paxis

6 near r¼ 0, as defined in Eq. (22). As P is integrated away from
the axis, Paxis

� behaves as an attractor solution.
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numbers, respectively, of the plasma displacement n. Since modes cou-
ple along the poloidal mode number and decouple along toroidal
mode number in tokamak geometries, we can take n to be single-
valued and index the coupled poloidal Fourier modes by a set of cardi-
nality #fmg ¼ M.

We describe an arbitrary perturbation by the variable NðwÞ,
which denotes an M 	 1 vector of Fourier mode amplitudes nm;nðwÞ.
A Lagrangian for the change in plasma potential energy due to N is
then defined by4

dW ¼
ð1
0

LðN;N0;N†;N† 0Þdw

¼ 1
2

ð1
0

N†0FN0 þ N†0KNþ N†K†N0 þ N†GN
� �

dw; (25)

where 0 � d=dw and † denotes a conjugate transpose. Here, the matri-
ces fF ¼ F†;G ¼ G†;Kg 2 C

M	M encode data about the plasma
equilibrium and geometry.

The toroidal Newcomb equation may be derived as the
Euler–Lagrange equation of this Lagrangian

�ðFN0 þ KNÞ0 þ ðK†N0 þGNÞ ¼ 0; (26)

or, written in its Hamiltonian form

q
p

� �0
¼ �F�1K F�1

G� K†F�1K K†F�1

 !
q

p

 !
: (27)

The canonical coordinates ðq; p†Þ ¼ ðN; ½FN0 þ KN�†Þ denote the
Fourier-decomposed perturbations N and their conjugate momenta—
as in Eq. (4). The coordinate w is used as an effective time coordinate
in this Hamiltonian system.

The Riccati transformation of Eq. (27) proceeds analogously to
the cylindrical case, by defining an M 	M linear transformation P
such that

pðwÞ ¼ PðwÞqðwÞ: (28)

Plugging this transformation into Eq. (27) yields the matrix Riccati dif-
ferential equation (MRDE) for P

P0 ¼ G� P� K†½ �F�1 P� K½ �: (29)

It is seen that P is Hermitian when initialized as such. We note that
whereas the MRDE of Eq. (29) solves for the M 	M Riccati matrix,
the full basis of linearly independent solutions to Eq. (27) in general
comprises a 2M 	 2M matrix.

Equation (28) suggests an important relationship between the
solutions of Eqs. (27) and (29). Given a 2M 	M matrix of modes

UðwÞ � QðwÞ
PðwÞ

	 

that satisfy the Hamiltonian equation (27), the asso-

ciated Riccati matrix is fully specified by

P ¼ PQ�1; (30)

as in Eq. (4). (We call attention to the serif and sans-serif fonts in this
expression.) We note that linear combinations of the columns of U—

i.e., U � C ¼ Q � C
P � C

	 

for some invertible constant matrix

C 2 C
M	M—leave P invariant. In this sense, the Riccati approach

removes extraneous degrees of freedom, which turn out to be irrele-
vant to a dW stability analysis.

The Newcomb procedure for the toroidal dW problem was first
defined in Ref. 4. We reframe the procedure in the Riccati formulation
as follows: (i) Mercier’s criterion20 (to be defined) for interchange sta-
bility is checked; (ii) assuming that Mercier’s criterion is satisfied, Eq.
(29) is integrated from the magnetic axis (w ¼ 0) to the plasma edge
(w ¼ 1) with small initial conditions (to be defined); (iii) after each
rational surface 0 < ws < 1—where the ODE is singular—P is re-
initialized again with a small solution and integrated forward; (iv) if
the resulting integrated solution has any conjugate points—that is, if P
has any infinities—then, the plasma is unstable to fixed-boundary
modes; otherwise, it is stable to such modes.

The “infinities” of the Riccati ODE define an instability criterion
for fixed-boundary perturbations in the toroidal system

DC � det P�1½ � ¼ 0; (31)

where P is the solution to Eq. (29). This criterion, discovered in Ref. 4,
mirrors Eq. (6) for the cylindrical case. A toroidal equilibrium is stable
to fixed-boundary modes if the critical determinant DC is non-
vanishing for allw 2 ð0; 1Þ.

Having defined a toroidal stability criterion for fixed-boundary
modes, we now examine the stability of free-boundary modes.
Following the argument of Eqs. (7) and (8), we define, differentiate,
and integrate a function SðwÞ to find

SðwÞ � 1
2
N†ðwÞPðwÞNðwÞ ¼

ðw

0
LðN;N0;N†;N†0Þd~w; (32)

where we have required Sð0Þ ¼ 0. Once again, PðwÞ is a Hermitian
bilinear form that maps a perturbation NðwÞ to its cumulative
extremal energetic cost over ½0;w�.

As in the cylindrical case, Eq. (32) suggests a free-boundary sta-
bility criterion as well. In particular, if a plasma is both Mercier- and
fixed-boundary-stable, then the solutions NðwÞ of Eq. (26) are not
only extremal but minimize dW. Accordingly, the Riccati solution
Pð1Þmaps an edge perturbation to its minimal energy

Sð1Þ ¼ 1
2
N†ð1ÞPð1ÞNð1Þ: (33)

We therefore define the toroidal plasma response matrix,WP � Pð1Þ.
As described in Ref. 4, we must further incorporate the perturbed

energy of the magnetized vacuum around the plasma, whose energetic
contribution can be described by 1

2N†ð1ÞWVNð1Þ. The vacuum response
matrix WV may be calculated independently of WP , as with the
VACUUM code.21,22 For a Mercier- and fixed-boundary-stable toroidal
plasma, therefore, the total bilinear formWT �WP þWV maps an arbi-
trary perturbationNð1Þ to its minimal energetic effect on the full system.

The eigenvalues of this bilinear form correspondingly define an
instability criterion

min
i

ki WP þWV½ � < 0; (34)

where ki½�� represents the ith matrix eigenvalue. That is, a toroidal
equilibrium is unstable to free-boundary modes if any eigenvalue of
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the total response matrixWT is negative. This criterion is a straightfor-
ward generalization of Eq. (10).

While the broad structure of the toroidal dW Riccati problem
largely follows its cylindrical counterpart, it remains for us to examine
the numerical details of the toroidal solution. In particular, we now
describe our strategy for integrating Eq. (29) near its singular points.

We first consider the initial condition of the toroidal Riccati ODE
at the magnetic axis. We recall that in Refs. 4 and 5, the small initial
conditions qð0Þ ¼ 0 were approximately imposed for the toroidal
Newcomb system of Eq. (27) by setting

Q
P

	 
����
w¼�
¼ 0M

1M

	 

: (35)

As in Eq. (30), here Q and P denote M	M fundamental matrices of
solutions to Eq. (27), while 0M and 1M denote the M	M null and
identity matrices, respectively. 0 < �
 1 describes a small distance
from the singular point at the magnetic axis, w ¼ 0. Initializing toroi-
dal modes slightly off-axis yields solutions across the plasma region,
which are consistent with the asymptotically regular solutions at
w ¼ 0.3,4 This consistency is the result of the rapid convergence
toward an attractor solution, as described in Eq. (22), and depicted in
the second plot of Fig. 1 for the analogous cylindrical system.

To implement the corresponding initial conditions for our toroi-
dal Riccati system, we plug Eq. (35) into Eq. (30). We find that the ini-
tial condition of Eq. (35) corresponds to a divergent Riccati matrix
Pð�Þ ! 1. This seemingly ill-defined initial condition is readily
implemented by employing the complementary matrix Riccati differ-
ential equation23 (CMRDE) for the inverse of the plasma response
matrix, R � P�1

R0 ¼ P�1ð Þ0 ¼ �P�1P0P�1

¼ �RGRþ 1� RK†½ �F�1 1� KR½ �: (36)

Clearly, the corresponding initial condition for the CMRDE should be
R ¼ 0M . In practice, therefore, we integrate our Riccati solution by
initializing Eq. (36) withRjw¼� ¼ 0M .

Although the CMRDE of Eq. (36) was defined to help initialize
the Riccati ODE, it serves an important and more general role in our
solution of the dW Riccati problem. In particular, when the magnitude
of RðwÞ grows sufficiently large after its integration away from the
magnetic axis, we invert it and continue integrating P via Eq. (29).
Thereafter, when P grows beyond some bound, we invert again and
integrate R from that point. We may continue in this way until the
plasma edge is reached, constraining the growth of our Riccati solution
by “bouncing” between integrations of Eqs. (29) and (36) until Pð1Þ is
found.

Indeed, because nonlinear ODEs can exhibit spontaneous singular-
ities—just as we noted in our discussion near Eq. (23) for R � P�1—
such a technique is sometimes necessary to solve for Pð1Þ. The sponta-
neous singularities of Riccati equations are a common and readily solv-
able feature of Riccati systems and have been addressed in the literature
by several methods, including CMRDEs and M€obius schemes.23,24 We
note that this method of bouncing between integrating R and P can be
equally well applied in the cylindrical case, using Eqs. (5) and (23).

Having described our strategies for integration away from w ¼ 0
and through spontaneous singularities, we now examine Eq. (29) near
rational surfaces ws, where qðwsÞ ¼ m=n. As in the cylindrical case,

we will find that the Riccati ODE avoids the divergent solutions of its
linear counterpart Eq. (27) at such points.

We first recall a decomposition of the fF;G;Kg matrices
described in Ref. 4

F ¼ Q�FQ; K ¼ Q�K; G ¼ �G; (37)

where �F; �G; and �K are nonsingular C
M	M matrices and where

Qm;m0 � m� nqðwÞ½ �dm;m0 : (38)

In Eq. (38), exactly one diagonal element of Q is seen to vanish at each
rational surface ws. We define z � w� ws and note that the singular
row of K and row and column of F scale as z near z¼ 0, while the
doubly singular diagonal element of F scales as z2. Observing that
Qmm � �nq0ðwsÞz near ws, we substitute Eq. (37) into Eq. (29) to find
linearly vanishing asymptotes for the singular row and column of P as
w! ws

PimðzÞ;PmiðzÞ / z; as z ! 0 8 i: (39)

The C1-continuity of P at z¼ 0 contrasts with the solutions of the
Newcomb Eq. (27), which diverge at toroidal rational surfaces most
stiffly in high b and low q0 shear plasmas.

As in the cylindrical case, the toroidal Riccati equation has big
and small resonant asymptotes at ws, corresponding to the big and
small solutions of Eq. (27). To satisfy the dW <1 condition and
cross ws via SSC, we must similarly constrain these resonant solutions
for P to the small asymptote.

One strategy to compute the asymptotic solutions of Eq. (27)
would be to follow the Frobenius method of Turrittin25 introduced in
Ref. 4. This method generates 2M 	 2M matrices Uðws6�Þ, whose
columns form complete bases for asymptotic solutions of Eq. (27) on
the left and right sides of ws, respectively. Each matrix U6� has two
singular columns with leading order behavior / jzj~a6 , where
~a6 � 6

ffiffiffiffiffiffiffiffiffi
�DI
p

. Here, DI is the Mercier parameter for axisymmetric
toroidal interchange stability.4,20 Although Turrittin’s method is not
directly applicable to the nonlinear Riccati equation, the resonant
modes of U6� could in principle be used to identify the resonant
asymptotes of P at ws, via Eq. (30).

However, we instead find that a straightforward numerical
approximation imposes the desired SSC constraint to high accuracy.
In particular, to cross ws via SSC, we leverage the dominance of the big
solution on approach to ws, and the dominance of the small solution
upon exiting ws. In particular, we identify the singular eigenvector v0
of P�� � Pðws � �Þ, whose eigenvalue approaches 0 at ws along the
big solution asymptote, and project it out

Pþ� ¼ 1� v0v
†
0

� �
P��: (40)

Since the small solution is an attractor solution when integrating away
from the singularity, it then dominates the resonant subspace as P is
integrated away from ws. We note that, in addition to the resonant
eigenvalue passing linearly through 0, the matrix P also has M � 1
nonvanishing eigenvalues at ws, which pass continuously through ws

and are unaffected by Eq. (40). As we shall see in Sec. V, this imple-
mentation of SSC for the Riccati system accurately reproduces the
results of DCON’s dW analysis.

We have thus specified our treatment of P at its fixed singulari-
ties fw ¼ 0;wsg and spontaneous singularities fwjDCðwÞ¼0g. For
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completeness, we note that the plasma separatrix (if it exists) is also a
fixed singularity of the toroidal Riccati ODE, at w ¼ 1. However, as sug-
gested in Ref. 4, our integration is simply truncated at w ¼ 1� �edge for
some small �edge to avoid the plasma edge.

V. NUMERICAL RESULTS

Having detailed our approach the toroidal Riccati dW problem,
we now discuss its numerical performance. We first describe the sig-
nificantly improved numerical behavior of the Riccati solution near
the magnetic axis. The M stiff solutions of Eq. (27) quickly span
OðMÞ � 40 orders of magnitude for typical tokamak equilibria when
integrated away from the magnetic axis. On the other hand, we find
that our bouncing technique for the Riccati system—which switches
between integrations of P and R (as described in Sec. IV)—success-
fully bounds its solutions for such equilibria. The norms of P and R
are constrained throughout their integration, with kPk1; kRk1�106.
This feature could be decisive in dW analyses for high-resolution
toroidal plasma equilibria that may require hundreds of modes to
achieve a convergent result at the plasma core.

This improved performance can be simply explained by appeal-
ing to the cylindrical Riccati equation. We recall that the condition
number of a differentiable function f(x) is defined by

condðf ðxÞÞ ¼
���� xf 0ðxÞf ðxÞ

����: (41)

In our discussion following Eq. (21), we noted that the regular cylin-
drical perturbations n behave as naxis� � rg� at the axis. The Newcomb
solution therefore has condðnaxis� ðrÞÞ � g�. On the other hand,
Paxis
� � g�f3r

2 has condition number condðPaxis
� ðrÞÞ � 2 near the

magnetic axis. Since g� ¼ jmj � 1 grows with poloidal mode number
m, the Newcomb ODE for cylindrical perturbations becomes increas-
ingly ill-conditioned for higher mmodes, whereas the condition num-
ber of Riccati solutions is unaffected. For toroidal equilibria, in which
tens or hundreds of modes might be present, this mode-invariant scal-
ing of the Riccati solution can be a helpful asset.

We benchmark the accuracy of the Riccati ODE by comparing
the eigenvalues of Pð1Þ with DCON. Integrating Eq. (29) with the
complex adaptive integrator ZVODE,27 we implement the various
aspects of our toroidal Riccati procedure, including the initialization
R ¼ 0M of Eq. (36) at w ¼ � and the SSC crossing method of Eq.
(40). The eigenvalues of the resulting plasma response matrix Pð1Þ
achieve a highly accurate reproduction of the dW analysis of DCON,
as depicted in Fig. 3. We have thus successfully benchmarked our
Riccati integration.

VI. DISCUSSION: THE MINIMIZATION OF dW BY
ADMISSIBLE PERTURBATIONS

As a final point of discussion, we now consider the effect of the
admissibility criterion dWðn�; nÞ <1 on the behavior of extremal
perturbations. In a cylindrical geometry, dW <1 limits us to solu-
tions that are small—P� and n�—at both the magnetic axis r¼ 0 and
rational surfaces rs. As demonstrated in Fig. 4, however, a solution of
Eqs. (3) or (5) that is small at a given singularity almost always maps
to the big solution at other singularities (except in marginal cases). As
a result, the only admissible extremal solution of Eq. (3) on the interval
½0; rs� that is small at both endpoints is the degenerate solution

0 ¼ ½n; n0�0�r�rs . (We note that P ¼ f n0=n is not well-defined for
such solutions.)

On the other hand, the free-boundary mode on the remaining
interval ½rs; 1� has only one small boundary condition to satisfy at rs.
For a cylindrical geometry with one singular surface, therefore, free-
boundary stability only requires integrating Prs

� (or nrs�) on the subin-
terval ½rs; 1�. (See also Ref. 1.) It is worth noting that if we put a con-
ducting wall—as Newcomb does3—at the plasma edge r¼ 1, then the
only admissible solution on ½rs; 1� would again be the degenerate one,
n ¼ 0. It is only the relaxation of this condition, by putting a vacuum
region at the edge of the plasma, which allows for nonzero extremal
free-boundary modes.

It is natural to wonder if the over-determined small boundary
conditions in the plasma core could alternatively be accommodated
by allowing perturbations to take the form of “broken” extremals.

FIG. 3. These charts benchmark the eigenvalues of the toroidal plasma response
matrix WP � Pð1Þ, as calculated by the Riccati ODE against the output of
DCON.4 Top: This chart displays the worst percentage error in any single eigen-
value of WP for equilibrium fitting (EFIT)26 reconstructions of several time slices of
DIII-D shot #156764. Bottom: This chart depicts the percentage error measured for
each of the 42 ordered eigenvalues k1 > � � � > k42 of WP , for a hand-fit recon-
struction of the 3000ms time slice of DIII-D shot #150312. The least eigenvalue,
k42, corresponds to the minimal-energy plasma response.
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In Eq. (3), for example, one might attempt to find a nonsingular point
0 < r� < rs at which naxis� on ½0; r�� could be continuously joined to
nrs� on ½r�; rs� (with a ‘break’ formed by their discontinuous derivative).

However, the Weierstrass–Erdmann (W� E) condition13 asserts
that it is never energetically advantageous to break the extremals of the
quadratic Lagrangian in Eq. (1) at nonsingular points. In particular,
when attempting to join two extremals n1 and n2 at a nonsingular
point r�; W� E requires the jump condition

0 ¼ @L

@n0

	 
r�þ�
r���
)
Eq: ð1Þ

f n01jr��� ¼ f n02jr�þ�; (42)

as �! 0. W� E therefore requires that both n and n0 are continuous
at any point where f ðrÞ 6¼ 0—i.e., that n1 ¼ n2. Indeed, no broken
extremal satisfying dW <1 will minimize dWmore than the degen-
erate Euler–Lagrange solution n ¼ 0 on ½0; rs�.

An analogous constraint occurs in toroidal geometries with sev-
eral rational surfaces fwi

sg
N
i¼1. To construct global solutions of Eq. (27)

that satisfy dW <1, the “big solution subspaces” uj6bigðw
j6
s Þ �

q
p

	 

big

ðwj6
s Þmust be zeroed on the left and right sides of each rational

surface wj6
s � ðw

j
s6�Þ, and u0þbigð�Þ must be zeroed at the magnetic

axis. This restriction generally results in the removal of Nþ 1 indepen-
dent solutions at the magnetic axis, where N is the number of singular
surfaces. This loss of dimensionality in the solution space is recovered
at the plasma edge, however—as it is in the cylindrical case—by the
reinstatement of the small solution at each rational surface. At a given
surface wiþ

s , we note that only the component of the small solution
uiþsmall that is orthogonal to big solutions mapped back to wiþ

s —that is

uiþsmall �
X
j>i

uj�big
huiþsmall;u

j�
bigi

huj�big; u
j�
bigi

2
4

3
5

w¼wiþ
s

; (43)

should be reinstated. This procedure is carried out near singular surfa-
ces in the DCON code, simply by integrating from the axis to the edge
and eliminating the big solution on approach to each singular surface.4

The corresponding Riccati procedure is defined in Eq. (40).

VII. SUMMARY AND CONCLUSION

We have demonstrated that the Riccati ODE of Eq. (29) offers a
practical alternative to the Newcomb equation for the calculation of
dW stability, and we identified several techniques for its solution. We
have described both the accuracy and improved numerical perfor-
mance of the Riccati ODE—especially at the magnetic axis. While a
nonlinear Riccati dW analysis is slower to evaluate than its (paralleliz-
able) linear counterpart, its numerical performance may enable the
dW analysis of otherwise intractable plasma equilibria that require
high resolution and many modes to describe. This numerical outper-
formance was shown to be particularly beneficial at the magnetic axis
of toroidal equilibria, where Riccati solutions are substantially better
conditioned. We have also brought dynamical system insights into our
study of the Riccati equation’s behavior at singular points.

Analytically, the Riccati approach is a more direct solution to the
dW stability problem; the eigenvalues of the toroidal Riccati matrix
characterize fixed- and free-boundary ideal MHD stability—as in Eqs.
(31) and (34). Rather than finding the perturbed modes that minimize
dW via Eq. (27), whose particular linear combinations are irrelevant to
a dW stability analysis, the Riccati method solves for the stability char-
acteristics of the system directly. In this way, it further sharpens our
understanding of Newcomb’s stability criterion.
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